常用DML操作
常用DML操作
一、数据导入导出
1.1 语法
LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE]
INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]
LOCAL
关键字代表从本地文件系统加载文件,省略则代表从 HDFS 上加载文件:- 从本地文件系统加载文件时,
filepath
可以是绝对路径也可以是相对路径 (建议使用绝对路径); - 从 HDFS 加载文件时候,
filepath
为文件完整的 URL 地址:如hdfs://namenode:port/user/hive/project/ data1
- 从本地文件系统加载文件时,
filepath
可以是文件路径 (在这种情况下 Hive 会将文件移动到表中),也可以目录路径 (在这种情况下,Hive 会将该目录中的所有文件移动到表中)- 如果使用 OVERWRITE 关键字,则将删除目标表(或分区)的内容,使用新的数据填充;不使用此关键字,则数据以追加的方式加入;
- 加载的目标可以是表或分区。如果是分区表,则必须指定加载数据的分区;
- 加载文件的格式必须与建表时使用
STORED AS
指定的存储格式相同。
使用建议:
不论是本地路径还是 URL 都建议使用完整的。虽然可以使用不完整的 URL 地址,此时 Hive 将使用 hadoop 中的 fs.default.name 配置来推断地址,但是为避免不必要的错误,建议使用完整的本地路径或 URL 地址;
加载对象是分区表时建议显示指定分区。在 Hive 3.0 之后,内部将加载 (LOAD) 重写为 INSERT AS SELECT,此时如果不指定分区,INSERT AS SELECT 将假设最后一组列是分区列,如果该列不是表定义的分区,它将抛出错误。为避免错误,还是建议显示指定分区。
1.2 插入数据
insert into table score1
partition (openingtime=201509)
values (21,1,'76'),(22,2,'45');
1.3 合并文本表格的文本文件
hadoop fs -text path_* > 000000
1.4 从文件导入数据
--本地导入
load data local inpath '/data/tmp/score_7.txt'
overwrite into table score PARTITION (openingtime=201507);
--群集导入
load data inpath '/tmp/input/score_8.txt'
overwrite into table score partition(openingtime=201508);
写入文件系统的数据被序列化为文本,其中列默认由^A 分隔,行由换行符分隔。如果列不是基本类型,则将其序列化为 JSON 格式。其中行分隔符不允许自定义,但列分隔符可以自定义,如下
-- 定义列分隔符为'\t'
insert overwrite local directory './test-04'
row format delimited
FIELDS TERMINATED BY '\t'
COLLECTION ITEMS TERMINATED BY ','
MAP KEYS TERMINATED BY ':'
select * from src;
1.5 导出数据
INSERT OVERWRITE LOCAL DIRECTORY '/tmp/ca_employees'
SELECT name,salary,address
FROM employees WHERE state='CA'
1.6 命令行结果输出到文件
hive -S -e 'select a,b from t1'>results.txt
二、查询结果插入到表
2.1 语法
INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...) [IF NOT EXISTS]]
select_statement1 FROM from_statement;
INSERT INTO TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)]
select_statement1 FROM from_statement;
Hive 0.13.0 开始,建表时可以通过使用 TBLPROPERTIES(“immutable”=“true”)来创建不可变表 (immutable table) ,如果不可以变表中存在数据,则 INSERT INTO 失败。(注:INSERT OVERWRITE 的语句不受
immutable
属性的影响);可以对表或分区执行插入操作。如果表已分区,则必须通过指定所有分区列的值来指定表的特定分区;
从 Hive 1.1.0 开始,TABLE 关键字是可选的;
从 Hive 1.2.0 开始 ,可以采用 INSERT INTO tablename(z,x,c1) 指明插入列;
可以将 SELECT 语句的查询结果插入多个表(或分区),称为多表插入。语法如下:
FROM from_statement INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...) [IF NOT EXISTS]] select_statement1 [INSERT OVERWRITE TABLE tablename2 [PARTITION ... [IF NOT EXISTS]] select_statement2] [INSERT INTO TABLE tablename2 [PARTITION ...] select_statement2] ...;
2.3 从已有表中选择数据插入其他表
INSERT OVERWRITE TABLE target
PARTITION (dt='2001-01-01')
SELECT col1, col2
FROM source;
2.4 多表插入
FROM records2
INSERT OVERWRITE TABLE stations_by_year
SELECT year, COUNT(DISTINCT station)
GROUP BY year
INSERT OVERWRITE TABLE records_by_year
SELECT year, COUNT(1)
GROUP BY year
INSERT OVERWRITE TABLE good_records_by_year
SELECT year, COUNT(1)
WHERE temperature != 9999 AND quality IN (0, 1, 4, 5, 9)
GROUP BY year;
三、更新和删除数据
3.1 语法
更新和删除的语法比较简单,和关系型数据库一致。需要注意的是这两个操作都只能在支持 ACID 的表,也就是事务表上才能执行。
-- 更新
UPDATE tablename SET column = value [, column = value ...] [WHERE expression]
--删除
DELETE FROM tablename [WHERE expression]
3.2 示例
1. 修改配置
首先需要更改 hive-site.xml
,添加如下配置,开启事务支持,配置完成后需要重启 Hive 服务。
<property>
<name>hive.support.concurrency</name>
<value>true</value>
</property>
<property>
<name>hive.enforce.bucketing</name>
<value>true</value>
</property>
<property>
<name>hive.exec.dynamic.partition.mode</name>
<value>nonstrict</value>
</property>
<property>
<name>hive.txn.manager</name>
<value>org.apache.hadoop.hive.ql.lockmgr.DbTxnManager</value>
</property>
<property>
<name>hive.compactor.initiator.on</name>
<value>true</value>
</property>
<property>
<name>hive.in.test</name>
<value>true</value>
</property>
2. 创建测试表
创建用于测试的事务表,建表时候指定属性 transactional = true
则代表该表是事务表。需要注意的是,按照官方文档 的说明,目前 Hive 中的事务表有以下限制:
- 必须是 buckets Table;
- 仅支持 ORC 文件格式;
- 不支持 LOAD DATA ...语句。
CREATE TABLE emp_ts(
empno int,
ename String
)
CLUSTERED BY (empno) INTO 2 BUCKETS STORED AS ORC
TBLPROPERTIES ("transactional"="true");
3. 插入测试数据
INSERT INTO TABLE emp_ts VALUES (1,"ming"),(2,"hong");
插入数据依靠的是 MapReduce 作业,执行成功后数据如下:
4. 测试更新和删除
--更新数据
UPDATE emp_ts SET ename = "lan" WHERE empno=1;
--删除数据
DELETE FROM emp_ts WHERE empno=2;